NUMERICAL SOLUTION OF A NONLINEAR REVERSE
PROBLEM OF HEAT CONDUCTION

O. M. Alifanov UDC 536.24.01

Two numerical methods are shown for determining the transient thermal fluxes and tempera-
tures at a surface of a heated plate with variable thermophysical properties. The effect of
input data precision on the recovery of boundary functions is also considered.

We consider a reverse problem of heat conduction in a thick and infinitely large plate. At both the
outer and the inner surface of the plate appear thermal fluxes variable with time q(7) and qpg(7) respec-
tively, Thermal flux q(7) is unknown, but the temperature Ty(7) at a fixed point inside the body is known,

The original r—x space (Fig. 1) will be subdivided into two subspaces DI{_'XbS =x=0,0=sr7= Tm}
and D,{0 =x<xp 0= 7= Tm}. Establishing the temperature Ty, (7) and the thermal flux q(7) at the outer
surface of the body may be regarded as extending the solution to the parabolic equation along the x-coor-
dinate to the space boundary. The equation of heat conduction can be integrated in two different ways. In
one way the integration over region D, proceeds in the direction of positive x, in the other way the integra-
tion over regions D and D, proceeds in the same direction (of positive x) so that it is not necessary to sub-
divide the entire region. In order to evaluate each method, we have developed numerical algorithms and
performed computer experiments. Let us consider the first method (scheme Num;) first.

From the solution to the forward problem of heat conduction with stipulated boundary conditions for
region Dy, one determines thé temperature field and the thermal flux qy(7) at point x = 0. In order to start
integrating in region D,, one must know the temperature Ty(7) and the thermal flux qy(7), and it is neces-
sary to stipulate the boundary condition at 7= 7,,:
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f T The end resulf of solving this problem is to be the determination of
e 1 the unknown functions Ty, (7) and q(1). We note that it is not usually pos~
- } sible to stipulate function ¢(x) a priori, As has been shown in computer
experiments, one may let (8T(X, 7,))/87= 0 or, better still, (9T (x, T))
/8T= (8T, 7y))/07= const. The solution deviates then from the sought
D, g solution within a rather narrow region 7 < v = 7,. This deviation can be
reduced significantly, if an approximation to function T(x, 7,) is found by
extrapolating in each xj layer from known temperatures Ty, (0 < m) in ac-
L ¢ -Xpe cordance with the selected grid {x;}i=0, 1, ..., k {nfn=1, 2, ..., m.

= ¢ (x),
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Fig. 1. Regions defined As a rule, however, the necessity of stipulating the boundary condi-
for the solution of the for- tion at 7= T can be avoided but, consequently, the solution in the vicinity
wardandthe reverse prob- of this boundary will become less precise. This is possible because of the
lem of heat conduction. temperature Ty(7) being usually known not only through the interval [0, ]
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Fig. 2. Results of solving a methodological reverse
problem with exact and with perturbed values of the in-
put temperature @, °G; Xy = 0.8 mm): solid lines repre-
sent exact solutions; 1) algorithm of Num;, with 6 ~ 0,
AFo = 0,06, and k = 8; 2} algorithm of Num, with 6§ ~ 0,
A¥o = 0.06, and # = 5; 3) algorithm of Num, with a nor-
mal distribution of temperature errors 3on('r) = 0.1Ty(7),
AFo = 0.32, and k = 6; 4) algorithm of Num, with 3crn(1')
= 0.1Ty(1), AFo = 0.15, and k = 6); 5) algorithms of
Num, and Num, with 3oy (7) = 0.05T; y,55 and AF0=0.06.

but also at 7 > 7,, which permits a modification of region D, from a rectangular to a trapezoidal one (Fig.
1). The temperatures at the free boundary EC are obtained automatically in the course of the solution pro-
cess,

T
r.
We now introduce a new variable ¢ = (1/>\0) \ A(T)dT. Problems (1)-(2) becomes then

b
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00, 1) -0y (1), —A, e == g, (7).

The difference analog of Eq. (3) is constructed according to the explicit symmetric "criss-cross"
scheme:
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The thermal flux is determined from the relation based on the method of elementary heat balances:

Bhn — Uk_ln o Ay Ay Gkn+1 — t)1;:-

g, = A .
0 Ax a 2 At

We will next consider the second method of solving this reverse problem of heat conduction (scheme
Num,). The solution is constructed here according to the implicit finite-difference scheme for approximat-

ing the quasilinear equation of heat conduction, written as follows (the origin of coordinates is located on
the plate boundary):
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y,0<x<& >0, (4)

1071



where

da
A=a(T)y, a=al)y MN=—.

We thus write for 4) an implicit six~point scheme, the second derivative weighted with ¢ = 1 and ap-
proximated (see, for instance, [1]k
@ AT

(Ay?

2a;, At a;,At
T +11 S AT — 22— T,
i-ln4l ! i: + (Ax)z ] in+l (Ax)2 i+in4l (5)
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Assuming, for simplicity, that the back surface of the plate is thermally insulated (qpg = 0), we write the
boundary conditions at x = 0 and x = bt

Tn —"'Tn Ax T" —-——T"
s — b I = Gy, S S (6)
- ;"l Tln-}-l — Tl—h”'l = C _A_}E_ Tl)1+1 — Tln (7)
n Ax in 2 ,.__.—..AT s
respectively. The initial condition is
Tw=fx) i=01,...,1L

Relations (5)-(7) yield a system of linear algebraic equations for the unknown thermal flux qn4q and
the unknown temperatures Tiget G =0, ..., ®—1, n+1, ..., I, where T, is a known temperature at a
given point i = % inside the body). As a result, with the notation
4 —1-2 a;, At o e a;,Av
” 7Y (Ax)?
. QAT Min
biw = Tin T —-(—AE;)?— (—4;:"—) (Ti-nn - Ti—ln)zs
in
2a,, At
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KU,LAX qn+1 + on
Az == b,

we have
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2 Fig. 3. Results of solving a methodological
reverse problem according to scheme Num,,
w0 e % with smoothed values of the input tempera-

o° j % ture (@, °C; xp= 0.08 mm): solid line repre-
: , gents exact solution; 1) normal distribution
00 eop o? | of temperature errors with 3op(1) = 0'1T%,max’
° AFp = 0.06, and n = 5 (T, smoothed by fourth
differences, number of smoothings N=10,000);
{ - 2) 3oy(7) = 0.1T max» AFo = 0.06, and n=5
7 z 7o (T, recovered hy the regularization method).
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The solution to the system Az = b can be based on the Gauss elimination method or on the square-root meth-
od [2]. In the latter case the original system is reduced, with the aid of a Gauss transformation, to a sys-
tem with a positive-definite matrix

A'Az = A'b.

Numerical calculations by both methods have yielded almost identical answers to problems of this
kind.

-On the basis of these algorithms for solving reverse problems, programs were written in the ALGOL
language and methodological examples were solved on two computers: model M-220 and model BESM-6.
The results are shown here for one such example. For the purpose of analysis, the body was considered
to be an excellent thermal insulator (A = 1.3* 10" kW/m-°Cand a = 1.2° 107" m%/sec). The thermal flux
function was known a priori ((i =qxy/A, Fo = a'r/x%):

q- 48--88Fo - 27Fo? °c,

From the solution to the forward problem of heat conduction in region Dy, we found the values of the tem-
perature at point x, which corresponded to g. An accuracy within 8 = 107% to 107%°K was attained. The
temperature thus found was then adopted as the exact input function for solving the reverse problem of heat
conduction. The sought Tw(7) and q(7) curves determined according to schemes Num, and Num, were stable
within the given range 0.06 < AFo = 0.32 (Fig. 2). However, random perturbations in the initial tempera-
ture produced instabilities in the computation process at Fo < 0.3-0.4 (Fig. 2). This is applied particularly
to the algorithm of scheme Num,. A necessary increase of the AT step may significantly worsen the ac-
curacy of the solution. In many problems, moreover, where intensive thermal phenomena are simulated
experimentally the A7 step becomes prohibitively large (sometimes even larger than the entire test time
interval of interest to the researcher) and such a method of stabilizing the solution is unsuitable. For this
reason, we studied the feasibility of specially processing the input data so as to produce stable approxima-
tions at sufficiently small At steps.

The input data were smoothed by the fourth-differences (five points) method and the input function was
recovered by the regularization method.

Smoothing by means of fourth differences [3] is based on the formula for successive (point-to-point)
refinements of the central values (at j = 0) of second-degree polynomials T = a + bj + cj? drawn through five
points according to the principle of least squares:

a =Ty 8T,

This method usually yields a sufficiently smooth curve within a short machine time.

Smoothing the input data yields only some average approximation to the sought temperature curve
T(7) (without recovering the derivative T'(7)). Numerical experiments have shown that this method of gen-
erating the input function is advantageous when the fluctuation errors in the values of the temperature re-
main small. In real experiments these errors are due to the inaccuracy of measuring, recording, and de-
coding devices. When the fluctuation errors become sufficiently large, then the application of this method
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to the solution of reverse problems may, in the final analysis, lead to an appreciable distortion of the bound-
ary conditions (Fig. 3). When generating the input data in those cases, one must seek the approximationnot
only to the sought function but also to its derivative.

 Determining the derivative of a function on the basis of test data is an ill-stated problem, because of
the unboundedness of the differential operator. An algorithm for uniformly approaching a derivative can be
constructed on the basis of A, N. Tikhonov's general method of solving ill-stated problems [4]. In the
course of solving reverse problems of heat conduction, the temperature data are preliminarily processed
by the following simple algorithm for the recovery of the derivative T' (1)

We consider the problem of solving an integral equation with an approximate right-hand side:

Au= 'g' u (g dt = 8 (v),
0

where
u(t) = —d—T—, ¢ (v)=T(7) — T (0).
we approximate the integral by
¥ (t,) = g u;AT,
where
7 = M - u;

’

’ 2
and we select the following regularizing functional [4]:

m n m - -
qna[u]zZfEEiAT—anlzm'Taz__(Hn_x—_“ﬂi, )
l 4 I < At
n=1 {=] i==0
with the regularization parameter o > 0.
Equating the partial derivatives of 1_11 to zero and assuming, for simplicity, zero boundary values:

u'(0) = u'(7y) = 0 (which, generally, is not absolutely necessary), we obtain a linear system of algebraic
equations for the family of discrete functions ugy (7) minimizable by means of the functional &, (8):
VW o i =, k=1,2 ..., m (9)
1=l

where
a, =Atm—I1+1), I>k--2;
ay, =At(m—1+1)—ea, =kl

ay=At(m—I1+D+4+2a, =1, m

gy, =A(m—I+1)-+a, =1 m
fk = 2 ﬁn'
n =k

System (9) was solved by the square-root method, permitting very precise calculations in a relative-
1y short machine time. The best approximation to the derivative was selected on the basis of the divergence
principle, in the form of the equality in [5]. We minimized the quantity

1 1
m

3 n‘__.A—— 2 A T_ T"nz d-z—'
Z‘(Zu, T—9,) -c] [é o? (1) -r] l

n=1 i=}

|

with o(7) denoting the absolute mean-squared error of measurements. The function o(7) hadtobe stipulated.
In practice it is usually necessary to compute discrete values of statistical estimates of this quantity which
correspond to fixed instants of time at some A1 step. For this, of course, one needs a sufficiently broad
selection of random realizations of the input function.
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An input function T(7) constructed on the basis of the recovered derivative closely approximated the
exact function and yielded a close approximation to the sought boundary condition (Fig. 3).

In many cases the derivative of a function has no independent value and only the input function is to be
recovered from T(7) data. This problem canbe solvedeven more simply. It may, for example, correspond
to the problem of minimizing the functional
O, [T) = ¥ T, —To,)t At +a

n=l n=0

m1 (Tr:-w.l"“Tn)2 .
At

In this way, an "improvement" of the input data permits a significant reduction of the critical step
size A1, at which instability of results becomes pronounced.

The algorithms for solving nonlinear reverse problems can be easily extended to the case of a com-
posite (e.g., two-layer) plate. Without any theoretical difficulties, they can also be converted for solving
problems where the heat transmission through a body is described by the general equation of heat conduc-
tion

aT 0 ; oT ) oT
at ax ( Tox ) ax
with internal gas and heat sources present in the body. The algorithm of Num, will not change significantly,
if the boundary with an unknown condition becomes movable (e.g., as a result of material wear). A change

will occur only in the shape of the integration region in which the movable boundary is definedby a stipulated
law X(7.

NOTATION
A is a matrix or an operator;
A is the transposed matrix;
a is the thermal diffusivity;
b is the plate thickness;
C is the specific heat referred to volume;
Dy, Dy are the integration regions for the equation of heat conduction;
f(x) is the initial temperature distribution;
q is the unknown thermal flux;
dhs is the thermal flux at the inner (back) surface;
T is the temperature;
Tw is the temperature at the outer surface;
Tsn are perturbed values of the input temperatures;
X is the space coordinate;
AX is the step of numerical integration along x;
Fo is the Fourier number;
AFo is the increment in the Fourier number;

o is the regularization parameter;

o} is the error of input temperature values;

6 is the model temperature defined by a Kirchhoff transform;

A is the thermal conductivity;

T is time;

Tm is the right-hand boundary of the time interval;

AT is the step of numerical integration along the time 7

T X are points on the time—space grid;

@ (%) is an additional boundary condition for solving a reverse problem by the scheme Num,.

Subscript

0 refers to values at point x = 0.
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